class="tags" href="/tags/C.html" title=
c>
content_views"
class="tags" href="/tags/C.html" title=
c>
class="markdown_views prism-tomorrow-night">
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/class="tags" href="/tags/C.html" title=c>cb7f73class="tags" href="/tags/C.html" title=c>cda1a14130840e356class="tags" href="/tags/C.html" title=c>cb0b6f9e4.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="100" />
<
class="tags" href="/tags/C.html" title=
c>
center>
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳]
class="tags" href="/tags/C.html" title=
c>
center>
<
class="tags" href="/tags/C.html" title=
c>
center>
本文专栏: C++
class="tags" href="/tags/C.html" title=
c>
center>
class="tags" href="/tags/C.html" title=c>c="https://img-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/00d4fdeb7b0d4dbb99e88f325ef249d8.gif#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="1000" height="100" />
💯前言
- 本篇文章将详细解析洛谷B2069题“求分数列和”的解题过程class="tags" href="/tags/C.html" title=c>c;包括题目的详细描述、解题思路、不同代码实现方案的比较与优化class="tags" href="/tags/C.html" title=c>c;以及对相关概念的深入拓展。文章的目标是帮助读者全面掌握此类题目的解法class="tags" href="/tags/C.html" title=c>c;并提升在C++编程中的逻辑分析与代码优化能力。
C++ 参考手册
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/f0db7class="tags" href="/tags/C.html" title=c>c348331440fa266b3class="tags" href="/tags/C.html" title=c>c24f558694.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
💯题目描述
B2069 求分数序列和
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/9b89e2ba5f3a49728095ba9f03class="tags" href="/tags/C.html" title=c>c2eclass="tags" href="/tags/C.html" title=c>ca2.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
有一个分数序列:
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
1
p
1
,
q
2
p
2
,
q
3
p
3
,
q
4
p
4
,
⋯
\fraclass="tags" href="/tags/C.html" title=c>c{q_1}{p_1}, \fraclass="tags" href="/tags/C.html" title=c>c{q_2}{p_2}, \fraclass="tags" href="/tags/C.html" title=c>c{q_3}{p_3}, \fraclass="tags" href="/tags/C.html" title=c>c{q_4}{p_4}, \class="tags" href="/tags/C.html" title=c>cdots
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">4class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">4class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="minner">⋯
其中class="tags" href="/tags/C.html" title=c>c;满足递推关系:
- class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
i
+
1
=
q
i
+
p
i
q_{i+1} = q_i + p_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
- class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
i
+
1
=
q
i
p_{i+1} = q_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
- 初始值 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
1
=
2
q_1 = 2
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">2, class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
1
=
1
p_1 = 1
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">1。
例如class="tags" href="/tags/C.html" title=c>c;前6项依次为:
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
2
1
,
3
2
,
5
3
,
8
5
,
13
8
,
21
13
\fraclass="tags" href="/tags/C.html" title=c>c{2}{1}, \fraclass="tags" href="/tags/C.html" title=c>c{3}{2}, \fraclass="tags" href="/tags/C.html" title=c>c{5}{3}, \fraclass="tags" href="/tags/C.html" title=c>c{8}{5}, \fraclass="tags" href="/tags/C.html" title=c>c{13}{8}, \fraclass="tags" href="/tags/C.html" title=c>c{21}{13}
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.1901em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.345em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">5class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">5class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">8class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">8class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">13class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">13class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">21class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">
任务是计算分数序列前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
n
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项的和。结果保留4位小数。
输入格式
输入一行包含一个正整数 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
n
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n(class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
≤
30
n \leq 30
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7719em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.136em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">nclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">≤class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">30)。
输出格式
输出一行浮点数class="tags" href="/tags/C.html" title=c>c;表示分数序列前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
n
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项之和class="tags" href="/tags/C.html" title=c>c;精确到小数点后4位。
输入输出样例
输入:
<class="tags" href="/tags/C.html" title=c>code>2
class="tags" href="/tags/C.html" title=c>code>
输出:
<class="tags" href="/tags/C.html" title=c>code>3.5000
class="tags" href="/tags/C.html" title=c>code>
💯解题思路
分析题目
-
递推关系:
- 序列的分子和分母满足递推关系:
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
i
+
1
=
q
i
+
p
i
q_{i+1} = q_i + p_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
i
+
1
=
q
i
p_{i+1} = q_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class=""> - 初始条件为 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
1
=
2
q_1 = 2
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">2, class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
1
=
1
p_1 = 1
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">1。
-
目标:
- 计算前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
n
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项的分数和:
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
sum
=
q
1
p
1
+
q
2
p
2
+
⋯
+
q
n
p
n
\text{sum} = \fraclass="tags" href="/tags/C.html" title=c>c{q_1}{p_1} + \fraclass="tags" href="/tags/C.html" title=c>c{q_2}{p_2} + \class="tags" href="/tags/C.html" title=c>cdots + \fraclass="tags" href="/tags/C.html" title=c>c{q_n}{p_n}
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord text">class="tags" href="/tags/C.html" title=c>class="mord">sumclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6667em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.0833em;">class="tags" href="/tags/C.html" title=c>class="minner">⋯class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.1645em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">nclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.1645em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">nclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">
-
数据范围:
- class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
n
≤
30
n \leq 30
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7719em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.136em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">nclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">≤class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">30class="tags" href="/tags/C.html" title=c>c;意味着序列递推和累加的规模较小class="tags" href="/tags/C.html" title=c>c;可以采用简单的迭代方式解决。
-
精度要求:
解题步骤
-
初始化变量:
- 定义两个变量分别表示分子 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
q
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">q 和分母 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
p
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">p。
- 定义一个变量 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
s
u
m
sum
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">sclass="tags" href="/tags/C.html" title=c>class="mord mathnormal">uclass="tags" href="/tags/C.html" title=c>class="mord mathnormal">m 用于累加结果。
-
递推计算:
- 根据公式更新 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
q
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">q 和 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
p
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">p。
- 累加当前项的分数值:class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
p
\fraclass="tags" href="/tags/C.html" title=c>c{q}{p}
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">。
-
输出结果:
- 使用浮点数输出class="tags" href="/tags/C.html" title=c>c;保留小数点后4位。
💯代码实现
我的代码实现
以下是我的代码实现:
<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><class="tags" href="/tags/C.html" title=c>cstdio>
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
class="tags" href="/tags/C.html" title=c>class="token keyword">double sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加和class="tags" href="/tags/C.html" title=c>c;双精度浮点数
class="tags" href="/tags/C.html" title=c>class="token keyword">int n class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, temp class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">int z class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, m class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分子和分母
class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
sum class="tags" href="/tags/C.html" title=c>class="token operator">+= z class="tags" href="/tags/C.html" title=c>class="token operator">* class="tags" href="/tags/C.html" title=c>class="token number">1.0 class="tags" href="/tags/C.html" title=c>class="token operator">/ mclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加当前项
temp class="tags" href="/tags/C.html" title=c>class="token operator">= zclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 暂存当前分子
z class="tags" href="/tags/C.html" title=c>class="token operator">= z class="tags" href="/tags/C.html" title=c>class="token operator">+ mclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的分子
m class="tags" href="/tags/C.html" title=c>class="token operator">= tempclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 更新分母为旧的分子
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">printfclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token string">"%.4lf"class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, sumclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">)class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 输出结果class="tags" href="/tags/C.html" title=c>c;保留 4 位小数
class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/class="tags" href="/tags/C.html" title=c>c0631b5911b0448d82e3daclass="tags" href="/tags/C.html" title=c>cb467efbd9.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/3class="tags" href="/tags/C.html" title=c>c079782687class="tags" href="/tags/C.html" title=c>c413d90a6855b7125a62b.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
实现特点
-
变量设计:
- 使用 <class="tags" href="/tags/C.html" title=c>code>zclass="tags" href="/tags/C.html" title=c>code> 表示当前分子class="tags" href="/tags/C.html" title=c>c;<class="tags" href="/tags/C.html" title=c>code>mclass="tags" href="/tags/C.html" title=c>code> 表示当前分母。
- 使用 <class="tags" href="/tags/C.html" title=c>code>tempclass="tags" href="/tags/C.html" title=c>code> 保存中间变量class="tags" href="/tags/C.html" title=c>c;避免覆盖数据。
-
核心递推逻辑:
- class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
q
i
+
1
=
q
i
+
p
i
q_{i+1} = q_i + p_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class=""> 用 <class="tags" href="/tags/C.html" title=c>code>z = z + mclass="tags" href="/tags/C.html" title=c>code> 实现。
- class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml">
p
i
+
1
=
q
i
p_{i+1} = q_i
class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class=""> 用 <class="tags" href="/tags/C.html" title=c>code>m = tempclass="tags" href="/tags/C.html" title=c>code> 实现。
-
浮点数计算:
- 显式将 <class="tags" href="/tags/C.html" title=c>code>z / mclass="tags" href="/tags/C.html" title=c>code> 转换为浮点数计算class="tags" href="/tags/C.html" title=c>c;确保精度。
-
结果输出:
- 使用 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code> 保留4位小数。
老师的代码实现
以下是老师给出的代码实现:
<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><class="tags" href="/tags/C.html" title=c>cstdio> class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 用于 printf
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
class="tags" href="/tags/C.html" title=c>class="token keyword">int n class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">float sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加和class="tags" href="/tags/C.html" title=c>c;浮点类型
class="tags" href="/tags/C.html" title=c>class="token keyword">float q class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分子 q
class="tags" href="/tags/C.html" title=c>class="token keyword">float p class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分母 p
class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
sum class="tags" href="/tags/C.html" title=c>class="token operator">+= q class="tags" href="/tags/C.html" title=c>class="token operator">/ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加当前项
q class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">+ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的 q
p class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">- pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的 p
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">printfclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token string">"%.4f\n"class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, sumclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">)class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 输出结果class="tags" href="/tags/C.html" title=c>c;保留 4 位小数
class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/2ea2abaclass="tags" href="/tags/C.html" title=c>ca1064eclass="tags" href="/tags/C.html" title=c>c092215df850a856a0.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/e8f05f2f4619484684b64b154f6bb2df.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
实现特点
-
变量优化:
- 直接使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code> 类型计算class="tags" href="/tags/C.html" title=c>c;避免临时变量。
-
核心递推逻辑:
- 使用 <class="tags" href="/tags/C.html" title=c>code>q = q + pclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>p = q - pclass="tags" href="/tags/C.html" title=c>code> 通过数学公式简化更新。
-
结果输出:
- 同样使用 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code> 保留4位小数。
优点
-
代码简洁:
- 变量数量少class="tags" href="/tags/C.html" title=c>c;通过数学公式避免了中间变量。
-
逻辑紧凑:
- 更新 <class="tags" href="/tags/C.html" title=c>code>pclass="tags" href="/tags/C.html" title=c>code> 的方式非常简练class="tags" href="/tags/C.html" title=c>c;体现了数学上的优化。
缺点
-
可读性较差:
- <class="tags" href="/tags/C.html" title=c>code>p = q - pclass="tags" href="/tags/C.html" title=c>code> 的逻辑不够直观class="tags" href="/tags/C.html" title=c>c;对初学者不够友好。
-
精度问题:
- 使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code> 类型可能导致精度不足。
💯对比分析
对比点 | 我的代码 | 老师的代码 |
---|
变量数量 | 多一个临时变量 <class="tags" href="/tags/C.html" title=c>code>tempclass="tags" href="/tags/C.html" title=c>code> | 仅用两个变量 <class="tags" href="/tags/C.html" title=c>code>qclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>pclass="tags" href="/tags/C.html" title=c>code> |
代码可读性 | 逻辑清晰class="tags" href="/tags/C.html" title=c>c;易于理解 | 数学简化逻辑不直观 |
浮点精度 | 使用 <class="tags" href="/tags/C.html" title=c>code>doubleclass="tags" href="/tags/C.html" title=c>code>class="tags" href="/tags/C.html" title=c>c;精度更高 | 使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code>class="tags" href="/tags/C.html" title=c>c;精度稍低 |
内存使用 | 稍高class="tags" href="/tags/C.html" title=c>c;多用了一个变量 | 更低class="tags" href="/tags/C.html" title=c>c;只用了必要的变量 |
实现复杂度 | 适中class="tags" href="/tags/C.html" title=c>c;易于实现和调试 | 较低class="tags" href="/tags/C.html" title=c>c;但对理解有一定要求 |
💯优化方案
结合两者的优点class="tags" href="/tags/C.html" title=c>c;我们可以进一步优化代码:
<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iomanip> class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 用于控制输出精度
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
class="tags" href="/tags/C.html" title=c>class="token keyword">int nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token keyword">double sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0.0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 使用 double 提高精度
class="tags" href="/tags/C.html" title=c>class="token keyword">int q class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, p class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 分子和分母初始化
class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
sum class="tags" href="/tags/C.html" title=c>class="token operator">+= class="tags" href="/tags/C.html" title=c>class="token genericlass="tags" href="/tags/C.html" title=c>c-funclass="tags" href="/tags/C.html" title=c>ction">class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">staticlass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>castclass="tags" href="/tags/C.html" title=c>class="token genericlass="tags" href="/tags/C.html" title=c>c class="tags" href="/tags/C.html" title=c>class-name">class="tags" href="/tags/C.html" title=c>class="token operator"><class="tags" href="/tags/C.html" title=c>class="token keyword">doubleclass="tags" href="/tags/C.html" title=c>class="token operator">>class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(qclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token operator">/ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 显式类型转换
q class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">+ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 直接更新分子
p class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">- pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 通过差值更新分母
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>cout class="tags" href="/tags/C.html" title=c>class="token operator"><< fixed class="tags" href="/tags/C.html" title=c>class="token operator"><< class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">setpreclass="tags" href="/tags/C.html" title=c>cisionclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token number">4class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token operator"><< sum class="tags" href="/tags/C.html" title=c>class="token operator"><< endlclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 使用现代化流输出
class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/bff0class="tags" href="/tags/C.html" title=c>c8f639f94dbb93e38ffd8abdb200.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/9600class="tags" href="/tags/C.html" title=c>c3class="tags" href="/tags/C.html" title=c>cdclass="tags" href="/tags/C.html" title=c>cf6class="tags" href="/tags/C.html" title=c>c4386addfclass="tags" href="/tags/C.html" title=c>c80b6e329e45.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
改进点
-
精度提升:
- 使用 <class="tags" href="/tags/C.html" title=c>code>doubleclass="tags" href="/tags/C.html" title=c>code> 类型以提高浮点运算的精度。
-
代码简化:
- 去掉了临时变量class="tags" href="/tags/C.html" title=c>c;简化逻辑。
-
现代化风格:
- 使用 <class="tags" href="/tags/C.html" title=c>code>class="tags" href="/tags/C.html" title=c>coutclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>setpreclass="tags" href="/tags/C.html" title=c>cisionclass="tags" href="/tags/C.html" title=c>code> 替代 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code>class="tags" href="/tags/C.html" title=c>c;更符合 C++ 标准。
💯小结
本题主要考察递推关系的理解与实现能力class="tags" href="/tags/C.html" title=c>c;同时对浮点数精度控制和代码优化提出了要求。在解题过程中class="tags" href="/tags/C.html" title=c>c;我们需要:
- 明确数列的递推关系。
- 合理设计变量以实现递推计算。
- 结合题目需求选择合适的浮点类型与输出方式。
通过对不同代码实现方案的比较与优化class="tags" href="/tags/C.html" title=c>c;我们不仅学会了更高效的解题方法class="tags" href="/tags/C.html" title=c>c;还理解了代码设计中的权衡取舍。希望本文能为读者提供帮助class="tags" href="/tags/C.html" title=c>c;在未来的编程学习中取得更大的进步!
class="tags" href="/tags/C.html" title=c>c="https://img-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/00d4fdeb7b0d4dbb99e88f325ef249d8.gif#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="1000" height="100" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />