【C++】B2069 求分数序列和题目解析与优化详解

news/2024/12/26 18:24:41 标签: c, c
class="tags" href="/tags/C.html" title=c>cle class="tags" href="/tags/C.html" title=c>class="baidu_pl">
class="tags" href="/tags/C.html" title=c>cle_class="tags" href="/tags/C.html" title=c>content" class="tags" href="/tags/C.html" title=c>class="articlass="tags" href="/tags/C.html" title=c>cle_class="tags" href="/tags/C.html" title=c>content class="tags" href="/tags/C.html" title=c>clearfix">
class="tags" href="/tags/C.html" title=c>content_views" class="tags" href="/tags/C.html" title=c>class="markdown_views prism-tomorrow-night"> class="tags" href="/tags/C.html" title=c>cap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-bloclass="tags" href="/tags/C.html" title=c>ck" style="-webkit-tap-highlight-class="tags" href="/tags/C.html" title=c>color: rgba(0, 0, 0, 0);">

class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/class="tags" href="/tags/C.html" title=c>cb7f73class="tags" href="/tags/C.html" title=c>cda1a14130840e356class="tags" href="/tags/C.html" title=c>cb0b6f9e4.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="100" />

<class="tags" href="/tags/C.html" title=c>center> 博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] class="tags" href="/tags/C.html" title=c>center> <class="tags" href="/tags/C.html" title=c>center> 本文专栏: C++ class="tags" href="/tags/C.html" title=c>center>

class="tags" href="/tags/C.html" title=c>class="toclass="tags" href="/tags/C.html" title=c>c">

文章目录

  • 💯前言
  • 💯题目描述
    • 输入格式
    • 输出格式
    • 输入输出样例
      • 输入:
      • 输出:
  • 💯解题思路
    • 分析题目
    • 解题步骤
  • 💯代码实现
    • 我的代码实现
      • 实现特点
    • 老师的代码实现
      • 实现特点
      • 优点
      • 缺点
  • 💯对比分析
  • 💯优化方案
      • 改进点
  • 💯小结


class="tags" href="/tags/C.html" title=c>c="https://img-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/00d4fdeb7b0d4dbb99e88f325ef249d8.gif#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="1000" height="100" />


💯前言

  • 本篇文章将详细解析洛谷B2069题“求分数列和”的解题过程࿰class="tags" href="/tags/C.html" title=c>c;包括题目的详细描述、解题思路、不同代码实现方案的比较与优化࿰class="tags" href="/tags/C.html" title=c>c;以及对相关概念的深入拓展。文章的目标是帮助读者全面掌握此类题目的解法࿰class="tags" href="/tags/C.html" title=c>c;并提升在C++编程中的逻辑分析与代码优化能力。
    C++ 参考手册
    class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/f0db7class="tags" href="/tags/C.html" title=c>c348331440fa266b3class="tags" href="/tags/C.html" title=c>c24f558694.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

💯题目描述

B2069 求分数序列和
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/9b89e2ba5f3a49728095ba9f03class="tags" href="/tags/C.html" title=c>c2eclass="tags" href="/tags/C.html" title=c>ca2.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

有一个分数序列:

class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q 1 p 1 , q 2 p 2 , q 3 p 3 , q 4 p 4 , ⋯ \fraclass="tags" href="/tags/C.html" title=c>c{q_1}{p_1}, \fraclass="tags" href="/tags/C.html" title=c>c{q_2}{p_2}, \fraclass="tags" href="/tags/C.html" title=c>c{q_3}{p_3}, \fraclass="tags" href="/tags/C.html" title=c>c{q_4}{p_4}, \class="tags" href="/tags/C.html" title=c>cdots class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">4class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">4class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="minner">⋯

其中࿰class="tags" href="/tags/C.html" title=c>c;满足递推关系:

  • class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q i + 1 = q i + p i q_{i+1} = q_i + p_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
  • class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p i + 1 = q i p_{i+1} = q_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
  • 初始值 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q 1 = 2 q_1 = 2 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">2, class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p 1 = 1 p_1 = 1 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">1

例如࿰class="tags" href="/tags/C.html" title=c>c;前6项依次为:
class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> 2 1 , 3 2 , 5 3 , 8 5 , 13 8 , 21 13 \fraclass="tags" href="/tags/C.html" title=c>c{2}{1}, \fraclass="tags" href="/tags/C.html" title=c>c{3}{2}, \fraclass="tags" href="/tags/C.html" title=c>c{5}{3}, \fraclass="tags" href="/tags/C.html" title=c>c{8}{5}, \fraclass="tags" href="/tags/C.html" title=c>c{13}{8}, \fraclass="tags" href="/tags/C.html" title=c>c{21}{13} class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.1901em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.345em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">3class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">5class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">5class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">8class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">8class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">13class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mpunclass="tags" href="/tags/C.html" title=c>ct">,class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.1667em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.8451em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">13class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.394em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">21class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.345em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">

任务是计算分数序列前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n n class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项的和。结果保留4位小数。

输入格式

输入一行包含一个正整数 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n n class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">nclass="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n ≤ 30 n \leq 30 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7719em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.136em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">nclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">≤class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">30)。

输出格式

输出一行浮点数࿰class="tags" href="/tags/C.html" title=c>c;表示分数序列前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n n class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项之和࿰class="tags" href="/tags/C.html" title=c>c;精确到小数点后4位。

输入输出样例

输入:

<class="tags" href="/tags/C.html" title=c>code>2
class="tags" href="/tags/C.html" title=c>code>

输出:

<class="tags" href="/tags/C.html" title=c>code>3.5000
class="tags" href="/tags/C.html" title=c>code>

💯解题思路

分析题目

  1. 递推关系

    • 序列的分子和分母满足递推关系:
      class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q i + 1 = q i + p i q_{i+1} = q_i + p_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
      class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p i + 1 = q i p_{i+1} = q_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">
    • 初始条件为 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q 1 = 2 q_1 = 2 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">2, class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p 1 = 1 p_1 = 1 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3011em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">1
  2. 目标

    • 计算前 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n n class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">n 项的分数和:
      class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> sum = q 1 p 1 + q 2 p 2 + ⋯ + q n p n \text{sum} = \fraclass="tags" href="/tags/C.html" title=c>c{q_1}{p_1} + \fraclass="tags" href="/tags/C.html" title=c>c{q_2}{p_2} + \class="tags" href="/tags/C.html" title=c>cdots + \fraclass="tags" href="/tags/C.html" title=c>c{q_n}{p_n} class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord text">class="tags" href="/tags/C.html" title=c>class="mord">sumclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3173em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">2class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6667em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.0833em;">class="tags" href="/tags/C.html" title=c>class="minner">⋯class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.1645em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">nclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.1645em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.357em; margin-left: -0.0359em; margin-right: 0.0714em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.5em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size3 size1 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">nclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.143em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">
  3. 数据范围

    • class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> n ≤ 30 n \leq 30 class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7719em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.136em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">nclass="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">≤class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6444em;">class="tags" href="/tags/C.html" title=c>class="mord">30class="tags" href="/tags/C.html" title=c>c;意味着序列递推和累加的规模较小࿰class="tags" href="/tags/C.html" title=c>c;可以采用简单的迭代方式解决。
  4. 精度要求

    • 输出结果保留小数点后4位。

解题步骤

  1. 初始化变量

    • 定义两个变量分别表示分子 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q q class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">q 和分母 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p p class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">p
    • 定义一个变量 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> s u m sum class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.4306em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">sclass="tags" href="/tags/C.html" title=c>class="mord mathnormal">uclass="tags" href="/tags/C.html" title=c>class="mord mathnormal">m 用于累加结果。
  2. 递推计算

    • 根据公式更新 class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q q class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p p class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">p
    • 累加当前项的分数值:class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q p \fraclass="tags" href="/tags/C.html" title=c>c{q}{p} class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 1.2286em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.4811em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mopen nulldelimiter">class="tags" href="/tags/C.html" title=c>class="mfraclass="tags" href="/tags/C.html" title=c>c">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.7475em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.655em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">pclass="tags" href="/tags/C.html" title=c>class="" style="top: -3.23em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="fraclass="tags" href="/tags/C.html" title=c>c-line" style="border-bottom-width: 0.04em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -3.4461em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 3em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.4811em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mclass="tags" href="/tags/C.html" title=c>close nulldelimiter">
  3. 输出结果

    • 使用浮点数输出࿰class="tags" href="/tags/C.html" title=c>c;保留小数点后4位。

💯代码实现

我的代码实现

以下是我的代码实现:

<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><class="tags" href="/tags/C.html" title=c>cstdio>
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;

class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
    class="tags" href="/tags/C.html" title=c>class="token keyword">double sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加和࿰class="tags" href="/tags/C.html" title=c>c;双精度浮点数
    class="tags" href="/tags/C.html" title=c>class="token keyword">int n class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, temp class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
    class="tags" href="/tags/C.html" title=c>class="token keyword">int z class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, m class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分子和分母

    class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
    class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
        sum class="tags" href="/tags/C.html" title=c>class="token operator">+= z class="tags" href="/tags/C.html" title=c>class="token operator">* class="tags" href="/tags/C.html" title=c>class="token number">1.0 class="tags" href="/tags/C.html" title=c>class="token operator">/ mclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加当前项
        temp class="tags" href="/tags/C.html" title=c>class="token operator">= zclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;           class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 暂存当前分子
        z class="tags" href="/tags/C.html" title=c>class="token operator">= z class="tags" href="/tags/C.html" title=c>class="token operator">+ mclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;          class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的分子
        m class="tags" href="/tags/C.html" title=c>class="token operator">= tempclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;           class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 更新分母为旧的分子
    class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}

    class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">printfclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token string">"%.4lf"class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, sumclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">)class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 输出结果࿰class="tags" href="/tags/C.html" title=c>c;保留 4 位小数
    class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>

class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/class="tags" href="/tags/C.html" title=c>c0631b5911b0448d82e3daclass="tags" href="/tags/C.html" title=c>cb467efbd9.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/3class="tags" href="/tags/C.html" title=c>c079782687class="tags" href="/tags/C.html" title=c>c413d90a6855b7125a62b.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

实现特点

  1. 变量设计

    • 使用 <class="tags" href="/tags/C.html" title=c>code>zclass="tags" href="/tags/C.html" title=c>code> 表示当前分子࿰class="tags" href="/tags/C.html" title=c>c;<class="tags" href="/tags/C.html" title=c>code>mclass="tags" href="/tags/C.html" title=c>code> 表示当前分母。
    • 使用 <class="tags" href="/tags/C.html" title=c>code>tempclass="tags" href="/tags/C.html" title=c>code> 保存中间变量࿰class="tags" href="/tags/C.html" title=c>c;避免覆盖数据。
  2. 核心递推逻辑

    • class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> q i + 1 = q i + p i q_{i+1} = q_i + p_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.7778em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="mbin">+class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2222em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class=""> 用 <class="tags" href="/tags/C.html" title=c>code>z = z + mclass="tags" href="/tags/C.html" title=c>code> 实现。
    • class="tags" href="/tags/C.html" title=c>class="katex--inline">class="tags" href="/tags/C.html" title=c>class="katex">class="tags" href="/tags/C.html" title=c>class="katex-mathml"> p i + 1 = q i p_{i+1} = q_i class="tags" href="/tags/C.html" title=c>class="katex-html">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.6389em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.2083em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal">pclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="mbin mtight">+class="tags" href="/tags/C.html" title=c>class="mord mtight">1class="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.2083em;">class="tags" href="/tags/C.html" title=c>class="">class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="mrel">=class="tags" href="/tags/C.html" title=c>class="mspaclass="tags" href="/tags/C.html" title=c>ce" style="margin-right: 0.2778em;">class="tags" href="/tags/C.html" title=c>class="base">class="tags" href="/tags/C.html" title=c>class="strut" style="height: 0.625em; verticlass="tags" href="/tags/C.html" title=c>cal-align: -0.1944em;">class="tags" href="/tags/C.html" title=c>class="mord">class="tags" href="/tags/C.html" title=c>class="mord mathnormal" style="margin-right: 0.0359em;">qclass="tags" href="/tags/C.html" title=c>class="msupsub">class="tags" href="/tags/C.html" title=c>class="vlist-t vlist-t2">class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.3117em;">class="tags" href="/tags/C.html" title=c>class="" style="top: -2.55em; margin-left: -0.0359em; margin-right: 0.05em;">class="tags" href="/tags/C.html" title=c>class="pstrut" style="height: 2.7em;">class="tags" href="/tags/C.html" title=c>class="sizing reset-size6 size3 mtight">class="tags" href="/tags/C.html" title=c>class="mord mathnormal mtight">iclass="tags" href="/tags/C.html" title=c>class="vlist-s">​class="tags" href="/tags/C.html" title=c>class="vlist-r">class="tags" href="/tags/C.html" title=c>class="vlist" style="height: 0.15em;">class="tags" href="/tags/C.html" title=c>class=""> 用 <class="tags" href="/tags/C.html" title=c>code>m = tempclass="tags" href="/tags/C.html" title=c>code> 实现。
  3. 浮点数计算

    • 显式将 <class="tags" href="/tags/C.html" title=c>code>z / mclass="tags" href="/tags/C.html" title=c>code> 转换为浮点数计算࿰class="tags" href="/tags/C.html" title=c>c;确保精度。
  4. 结果输出

    • 使用 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code> 保留4位小数。

老师的代码实现

以下是老师给出的代码实现:

<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><class="tags" href="/tags/C.html" title=c>cstdio> class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 用于 printf
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;

class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
    class="tags" href="/tags/C.html" title=c>class="token keyword">int n class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
    class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;

    class="tags" href="/tags/C.html" title=c>class="token keyword">float sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加和࿰class="tags" href="/tags/C.html" title=c>c;浮点类型
    class="tags" href="/tags/C.html" title=c>class="token keyword">float q class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;   class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分子 q
    class="tags" href="/tags/C.html" title=c>class="token keyword">float p class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;   class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 初始化分母 p

    class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
        sum class="tags" href="/tags/C.html" title=c>class="token operator">+= q class="tags" href="/tags/C.html" title=c>class="token operator">/ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 累加当前项
        q class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">+ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;    class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的 q
        p class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">- pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;    class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 计算新的 p
    class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}

    class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">printfclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token string">"%.4f\n"class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, sumclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">)class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 输出结果࿰class="tags" href="/tags/C.html" title=c>c;保留 4 位小数
    class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>

class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/2ea2abaclass="tags" href="/tags/C.html" title=c>ca1064eclass="tags" href="/tags/C.html" title=c>c092215df850a856a0.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/e8f05f2f4619484684b64b154f6bb2df.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

实现特点

  1. 变量优化

    • 直接使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code> 类型计算࿰class="tags" href="/tags/C.html" title=c>c;避免临时变量。
  2. 核心递推逻辑

    • 使用 <class="tags" href="/tags/C.html" title=c>code>q = q + pclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>p = q - pclass="tags" href="/tags/C.html" title=c>code> 通过数学公式简化更新。
  3. 结果输出

    • 同样使用 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code> 保留4位小数。

优点

  1. 代码简洁

    • 变量数量少࿰class="tags" href="/tags/C.html" title=c>c;通过数学公式避免了中间变量。
  2. 逻辑紧凑

    • 更新 <class="tags" href="/tags/C.html" title=c>code>pclass="tags" href="/tags/C.html" title=c>code> 的方式非常简练࿰class="tags" href="/tags/C.html" title=c>c;体现了数学上的优化。

缺点

  1. 可读性较差

    • <class="tags" href="/tags/C.html" title=c>code>p = q - pclass="tags" href="/tags/C.html" title=c>code> 的逻辑不够直观࿰class="tags" href="/tags/C.html" title=c>c;对初学者不够友好。
  2. 精度问题

    • 使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code> 类型可能导致精度不足。

💯对比分析

对比点我的代码老师的代码
变量数量多一个临时变量 <class="tags" href="/tags/C.html" title=c>code>tempclass="tags" href="/tags/C.html" title=c>code>仅用两个变量 <class="tags" href="/tags/C.html" title=c>code>qclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>pclass="tags" href="/tags/C.html" title=c>code>
代码可读性逻辑清晰࿰class="tags" href="/tags/C.html" title=c>c;易于理解数学简化逻辑不直观
浮点精度使用 <class="tags" href="/tags/C.html" title=c>code>doubleclass="tags" href="/tags/C.html" title=c>code>࿰class="tags" href="/tags/C.html" title=c>c;精度更高使用 <class="tags" href="/tags/C.html" title=c>code>floatclass="tags" href="/tags/C.html" title=c>code>࿰class="tags" href="/tags/C.html" title=c>c;精度稍低
内存使用稍高࿰class="tags" href="/tags/C.html" title=c>c;多用了一个变量更低࿰class="tags" href="/tags/C.html" title=c>c;只用了必要的变量
实现复杂度适中࿰class="tags" href="/tags/C.html" title=c>c;易于实现和调试较低࿰class="tags" href="/tags/C.html" title=c>c;但对理解有一定要求

💯优化方案

结合两者的优点࿰class="tags" href="/tags/C.html" title=c>c;我们可以进一步优化代码:

<class="tags" href="/tags/C.html" title=c>code class="tags" href="/tags/C.html" title=c>class="prism language-class="tags" href="/tags/C.html" title=c>cpp">class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iostream>
class="tags" href="/tags/C.html" title=c>class="token maclass="tags" href="/tags/C.html" title=c>cro property">class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive-hash">#class="tags" href="/tags/C.html" title=c>class="token direclass="tags" href="/tags/C.html" title=c>ctive keyword">inclass="tags" href="/tags/C.html" title=c>clude class="tags" href="/tags/C.html" title=c>class="token string"><iomanip> class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 用于控制输出精度
class="tags" href="/tags/C.html" title=c>class="token keyword">using class="tags" href="/tags/C.html" title=c>class="token keyword">namespaclass="tags" href="/tags/C.html" title=c>ce stdclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;

class="tags" href="/tags/C.html" title=c>class="token keyword">int class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">mainclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
    class="tags" href="/tags/C.html" title=c>class="token keyword">int nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
    class="tags" href="/tags/C.html" title=c>cin class="tags" href="/tags/C.html" title=c>class="token operator">>> nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;

    class="tags" href="/tags/C.html" title=c>class="token keyword">double sum class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0.0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 使用 double 提高精度
    class="tags" href="/tags/C.html" title=c>class="token keyword">int q class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">2class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">, p class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">1class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 分子和分母初始化

    class="tags" href="/tags/C.html" title=c>class="token keyword">for class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token keyword">int i class="tags" href="/tags/C.html" title=c>class="token operator">= class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; i class="tags" href="/tags/C.html" title=c>class="token operator">< nclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; iclass="tags" href="/tags/C.html" title=c>class="token operator">++class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">{
        sum class="tags" href="/tags/C.html" title=c>class="token operator">+= class="tags" href="/tags/C.html" title=c>class="token genericlass="tags" href="/tags/C.html" title=c>c-funclass="tags" href="/tags/C.html" title=c>ction">class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">staticlass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>castclass="tags" href="/tags/C.html" title=c>class="token genericlass="tags" href="/tags/C.html" title=c>c class="tags" href="/tags/C.html" title=c>class-name">class="tags" href="/tags/C.html" title=c>class="token operator"><class="tags" href="/tags/C.html" title=c>class="token keyword">doubleclass="tags" href="/tags/C.html" title=c>class="token operator">>class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(qclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token operator">/ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 显式类型转换
        q class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">+ pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 直接更新分子
        p class="tags" href="/tags/C.html" title=c>class="token operator">= q class="tags" href="/tags/C.html" title=c>class="token operator">- pclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 通过差值更新分母
    class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}

    class="tags" href="/tags/C.html" title=c>cout class="tags" href="/tags/C.html" title=c>class="token operator"><< fixed class="tags" href="/tags/C.html" title=c>class="token operator"><< class="tags" href="/tags/C.html" title=c>class="token funclass="tags" href="/tags/C.html" title=c>ction">setpreclass="tags" href="/tags/C.html" title=c>cisionclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">(class="tags" href="/tags/C.html" title=c>class="token number">4class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">) class="tags" href="/tags/C.html" title=c>class="token operator"><< sum class="tags" href="/tags/C.html" title=c>class="token operator"><< endlclass="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">; class="tags" href="/tags/C.html" title=c>class="token class="tags" href="/tags/C.html" title=c>comment">// 使用现代化流输出
    class="tags" href="/tags/C.html" title=c>class="token keyword">return class="tags" href="/tags/C.html" title=c>class="token number">0class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">;
class="tags" href="/tags/C.html" title=c>class="token punclass="tags" href="/tags/C.html" title=c>ctuation">}
class="tags" href="/tags/C.html" title=c>code>

class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/bff0class="tags" href="/tags/C.html" title=c>c8f639f94dbb93e38ffd8abdb200.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />
class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/9600class="tags" href="/tags/C.html" title=c>c3class="tags" href="/tags/C.html" title=c>cdclass="tags" href="/tags/C.html" title=c>cf6class="tags" href="/tags/C.html" title=c>c4386addfclass="tags" href="/tags/C.html" title=c>c80b6e329e45.png#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" />

改进点

  1. 精度提升

    • 使用 <class="tags" href="/tags/C.html" title=c>code>doubleclass="tags" href="/tags/C.html" title=c>code> 类型以提高浮点运算的精度。
  2. 代码简化

    • 去掉了临时变量࿰class="tags" href="/tags/C.html" title=c>c;简化逻辑。
  3. 现代化风格

    • 使用 <class="tags" href="/tags/C.html" title=c>code>class="tags" href="/tags/C.html" title=c>coutclass="tags" href="/tags/C.html" title=c>code> 和 <class="tags" href="/tags/C.html" title=c>code>setpreclass="tags" href="/tags/C.html" title=c>cisionclass="tags" href="/tags/C.html" title=c>code> 替代 <class="tags" href="/tags/C.html" title=c>code>printfclass="tags" href="/tags/C.html" title=c>code>࿰class="tags" href="/tags/C.html" title=c>c;更符合 C++ 标准。

💯小结

本题主要考察递推关系的理解与实现能力࿰class="tags" href="/tags/C.html" title=c>c;同时对浮点数精度控制和代码优化提出了要求。在解题过程中࿰class="tags" href="/tags/C.html" title=c>c;我们需要:

  1. 明确数列的递推关系。
  2. 合理设计变量以实现递推计算。
  3. 结合题目需求选择合适的浮点类型与输出方式。

通过对不同代码实现方案的比较与优化࿰class="tags" href="/tags/C.html" title=c>c;我们不仅学会了更高效的解题方法࿰class="tags" href="/tags/C.html" title=c>c;还理解了代码设计中的权衡取舍。希望本文能为读者提供帮助࿰class="tags" href="/tags/C.html" title=c>c;在未来的编程学习中取得更大的进步!


class="tags" href="/tags/C.html" title=c>c="https://img-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/00d4fdeb7b0d4dbb99e88f325ef249d8.gif#piclass="tags" href="/tags/C.html" title=c>c_class="tags" href="/tags/C.html" title=c>center" alt="在这里插入图片描述" width="1000" height="100" />


class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />class="tags" href="/tags/C.html" title=c>c="https://i-blog.class="tags" href="/tags/C.html" title=c>csdnimg.class="tags" href="/tags/C.html" title=c>cn/direclass="tags" href="/tags/C.html" title=c>ct/fclass="tags" href="/tags/C.html" title=c>c6aclass="tags" href="/tags/C.html" title=c>c6d93b4745b591bb8a8e48f86779.png#piclass="tags" href="/tags/C.html" title=c>c_right" alt="在这里插入图片描述" width="1" />

class="tags" href="/tags/C.html" title=c>class="blog-vote-box">

http://www.niftyadmin.cn/n/5800811.html

相关文章

在iOS上游玩ONS游戏 - RenpyReader!

RenpyReader再次实现了ONS游戏的支持&#xff0c;现在RenpyReader的功能用一个图表示就是这样的&#xff1a; 一个糟糕的开发经历 原来的ONSPlayer和RenpyViewer受到之前开发账户的影响&#xff0c;导致官方下架了相关应用。 在Renpy功能实现后&#xff0c;ONS功能的APP开发…

Java课程设计:基于tomcat+jsp+sqlserver的javaweb计算机配件报价系统

一、项目介绍 前台功能模块&#xff1a;系统首页、我的信息、留言板、用户登陆、公告以及日历模块 后台功能模块&#xff1a;修改个人信息、管理员管理、注册用户管理、类别信息管理、类别信息添加、散件信息管理、散件信息添加、公告信息管理、公告信息添加 二、项目技术栈…

[1111].集成开发工具Pycharm安装与使用

所有博客大纲 后端学习大纲 Python大纲 1.下载&#xff1a; 官方下载地址 2.安装&#xff1a; 1.双击exe文件&#xff0c;然后下一步选择安装目录 2.选择桌面快捷方式及安装&#xff1a; 3.安装完成 3.启动&#xff1a; 4.设置&#xff1a; 4.1.设置运行时环境&#xff1a;…

nginx-代理服务

目录 相关指令 相关模块 安装新模块proxy_pass指令 案例 proxy_set_header指令 案例 被代理服务器配置 代理服务器配置 proxy_redirect指令 案例 服务端配置 代理服务器配置 正向代理 需求分析 环境准备 配置 主机配置 服务器配置 主配置文件 web文件配置 …

单片机:实现SYN6288语音播报(附带源码)

单片机实现SYN6288语音播报 SYN6288是一款广泛应用于语音合成的IC&#xff0c;可以通过串口与单片机&#xff08;如51系列、STM32等&#xff09;进行通信&#xff0c;实现场景化的语音播报。通过连接外部存储设备&#xff08;如SD卡&#xff09;存储语音文件或直接通过内部语音…

3.银河麒麟V10 离线安装Nginx

1. 下载nginx离线安装包 前往官网下载离线压缩包 2. 下载3个依赖 openssl依赖&#xff0c;前往 官网下载 pcre2依赖下载&#xff0c;前往Git下载 zlib依赖下载&#xff0c;前往Git下载 下载完成后完整的包如下&#xff1a; 如果网速下载不到请使用网盘下载 通过网盘分享的文件…

K8s - openeuler2203SP1安装 K8s + flannel

环境说明 [rootmaster-1 ~]# uname -a Linux master-1 5.10.0-136.12.0.86.oe2203sp1.x86_64 #1 SMP Tue Dec 27 17:50:15 CST 2022 x86_64 x86_64 x86_64 GNU/Linux安装过程 1、安装 containerd 下载 tar 包 # 确保没有使用官方仓库的containerd [rootlocalhost ~]# yum rem…

【计算机视觉】超简单!傅里叶变换的经典案例

Hey小伙伴们&#xff01;今天来给大家分享一个 计算机视觉 中非常经典且重要的技术——傅里叶变换&#xff08;Fourier Transform, FT&#xff09;。傅里叶变换在图像处理、信号分析等领域有着广泛的应用&#xff0c;它可以帮助我们从频域的角度理解图像的特性&#xff0c;进行…